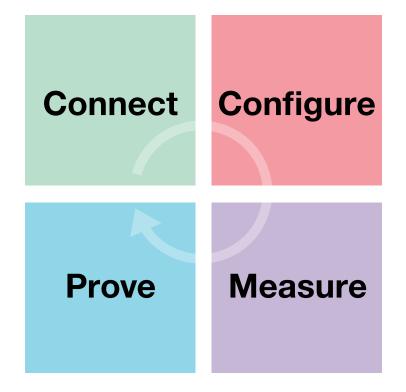
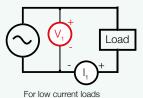


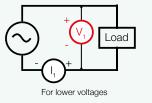
Getting Started with Electrical Power Measurements

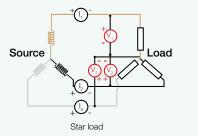

Energy efficiency directives from bodies like International Electro technical Commission (IEC), European commission, California Energy Commission (CEC) and others govern standards across various classes of electrical, electronic and mechatronic equipment.

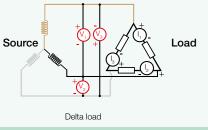
This infographic provides a snapshot guide for making reliable power measurements across your product development lifecycle with particular emphasis on the high accuracy needs of compliance testing.

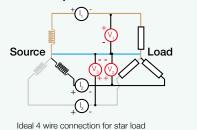
> Scan the QR code to enter the Yokogawa VIP Suite for Power Measurements. On this page we have collected together the most updated Yokogawa Test & Measurement power measurement related articles, news and videos for your easy viewing.

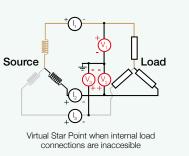





The wiring requirements of your application will dictate the number of channels needed from your power measurement instrument. Choose the wiring configuration and connect the device under test to the voltage and current inputs of the instrument accordingly.


1P2W - Single phase two wire




3P3W - Three phase three wire

3P4W - Three phase four wire

Connecting to a power measurement instrument* The voltmeters and ammeters in the wiring diagrams represent (၂) connections to the be used. voltage and current inputs in each element of a power analyser.

* Oscilloscope, Power Analyser or power scope - Scan the QR code to learn about which instrument to use when.

For currents or voltages exceeding input capacity, external sensors can

Connect

Configure

Measure

Prove

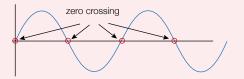
Home

2. Configure your instrument

Your instrument will now display readings and compute poly-phase power and efficiency based on your chosen wiring. This section describes some of the most common settings you can configure in order to acquire the best results.

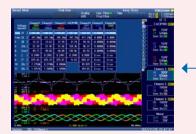
Tweak the measurement period

Your instrument synchronises all measurements to the fundamental frequency of one of the input signals. Use the least distorted input signal (voltage or current) as the synchronisation source. The cleaner the signal, the better the instrument detects zero crossings to determine correct measurement periods.


Select the measurement range

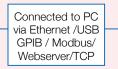
To ensure the best accuracy, pick the voltage and current ranges closest to the RMS value of the signal being measured.

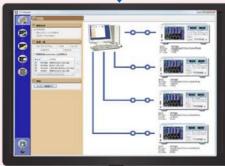
Set the data update rate


The data update rate needs to be longer than 1 period of the measurement signal. Longer update rates help average out noise while shorter update rates are useful to detect / analyse inconsistencies. For fluctuating signals, the update rate may be set to change automatically based on changing input frequencies.

Connect

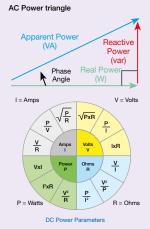
A frequency filter can remove noise from the chosen synchronisation signal for cleaner period detection




Customise your display to analyse multiple input signals in numeric, waveform, trend, vector or harmonic bar displays.

*Apply a Line filter if you need to remove unnecessary noise/high frequency components.

* Some measurement instruments offer measurement of electromechanical parameters such as torque, mechanical power, synchronous speed, slip, electrical angle, motor efficiency and total system efficiency from the analogue or pulse inputs of rotation and torque sensors.

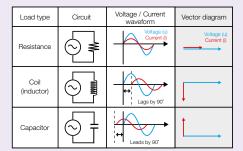

Use Measurement software to control, monitor, collect, analyse and save measurements remotely.

	Configure	Measure	Prove	
--	-----------	---------	-------	--

3. Take the measurements

A number of electrical parameters need to be measured across development, production monitoring and compliance testing. Given below are some of the common phenomena being measured.

Line: A conducting

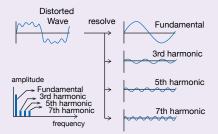

Phase: Any one component of

a 3 phase source or load

loac

Power and Energy

- Power (P) is the rate at which energy is generated or dissipated, measured in Watts. It is the average value over time of the instantaneous power of alternating current. It depends on voltage (V), current (I) and cosine Φ , ' Φ ' being the angle of the phase difference between V and I.
- Reactive Power (Q) Power stored and released as magnetic or electrostatic fields
- Apparent Power (S) Total power in an AC circuit, both dissipated and absorbed/returned measured in Volt-Amps (VA).
- **Power Factor** (λ)- Ratio of true power to apparent power. Also expressed as $\cos \Phi$.
- Energy The total energy consumed or generated over a defined period. (Watthours) Computed as power Integrated over specified time period
- Efficiency- Ratio of output power to input power



In addition to resistance, AC circuits may have inductive and capacitive loads that add reactance to the total circuit impedance and cause voltage and current to be out of phase by an angle Φ

Voltage and Current

- **RMS values** of voltage (Vrms) and current (Irms) are the amount of AC voltage and current that does the same work as a DC voltage and current
- Peak value of Voltage (Vpk) or current (lpk) is the highest absolute value of the input signal
- Mean Voltage (Vmean) or current (Imean) is the average of all rectified instantaneous values over a defined period.
- Line current: Current through any one line between a three-phase source and load.
- Line voltage: Voltage between any two lines
- Phase current: Current through any one component in a three-phase source or load.
- Phase voltage: Voltage across a load in a particular phase

Harmonics & Distortions

Impedance

Total Harmonic Distortion THD RMS value of all harmonics RMS value of fundamental wave

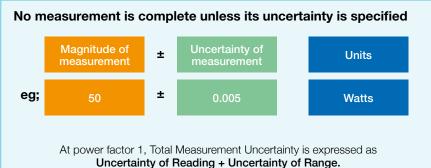
Harmonic Distortion Factor RMS value of nth harmonic

- RMS value of fundamental wave
- Any complex waveform can be split into its constituent fundamental wave and higher order harmonics.
- While useful in applications such as VFDs, harmonics can cause noise, heating and unwanted vibrations when left unchecked and can pollute the electricity grid.
- Standards like IEC61000-3-2 place restrictions on harmonics across various classes of products in order to ensure reliable electrical systems.

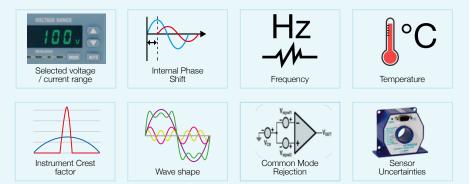
C	O	n	n	e	ct	

Source

Measure


Prove

4. Prove the accuracy


Manufacturers today have to meet a number of governmental and regulatory standards to ensure product efficiency, safety, comfort and productivity for consumers and businesses. Adherence to such standards often requires uncertainty specifications that are traceable to national and international calibration references. This section lists some of the factors influencing measurement uncertainty and how to achieve accurate measurements today and over the long term.

Measurement and uncertainty

In reality, there are more factors affecting total uncertainty which can be accounted for using the measurement instrument's specification sheet

Factors affecting Measurement Uncertainty

Reliability of your measurement

To ensure compliance with stringent and How accurate is it today? evolving international standards, measurements not only have to be accurate Refer to the instrument's today but also offer repeatable results from accuracy specifications to day to day and over the long term. account for the uncertainty of your readings from the factors listed above. Note: Some instruments are specified based on FUROPEAN RMS range reference while others are specified STANDARDS using Peak reference.

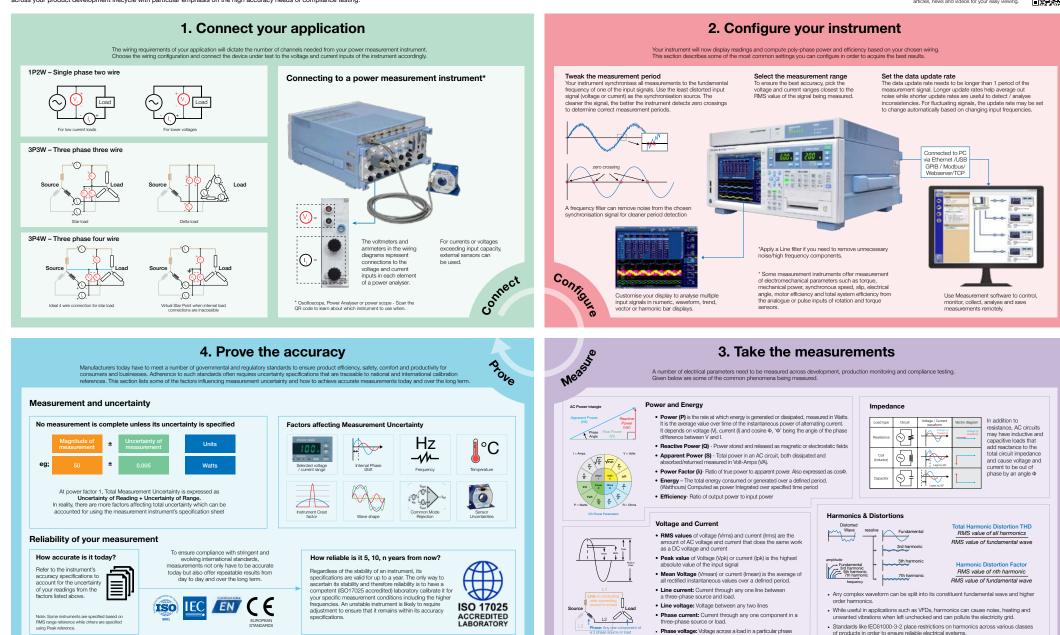
How reliable is it 5, 10, n years from now?

Regardless of the stability of an instrument, its specifications are valid for up to a year. The only way to ascertain its stability and therefore reliability is to have a competent (ISO17025 accredited) laboratory calibrate it for your specific measurement conditions including the higher frequencies. An unstable instrument is likely to require adjustment to ensure that it remains within its accuracy specifications.

Connect

Configure

Measure


Prove

Getting Started with Electrical Power Measurements

Energy efficiency directives from bodies like International Electro technical Commission (EC), European commission, California Energy Commission (CEC) and others govern standards across various classes of electrical, electronic and mechatronic equipment. This infographic provides a snapshot guide for making reliable power measurements across your product development lifecycle with particular emphasis on the high accuracy needs of compliance testing. Scan the OR code to enter the Yokogawa VIP Suite for Power Measurements. On this page we have collected together the most updated Yokogawa Test & Measurement power measurement related articles, news and videos for your easy viewing.

YOKOGAWA

Precision Making